

D. Mummy¹, T. Lampkins², W. Zha³, M. Evans⁴, R. Thomen^{5,6}, M. Schiebler⁷, R. Sorkness⁸, L. Denlinger⁹, N. Jarjour⁹, J. Woods^{5,6}, M. Castro⁹, S.B. Fain^{1,3,7} ¹Biomedical Engineering, ²Biology, ³Medical Physics, and ⁴Biostatistics and Medical Informatics, University of Wisconsin – Madison, Madison WI/US, ⁵Center for Pulmonary Imaging Research, Cincinnati Children's Hospital, Cincinnati OH/US, ⁶Radiology, Washington University in St. Louis, St. Louis MO/US, ⁷Radiology, ⁸Pharmacy, and ⁹Pulmonary and Critical Care, University of Wisconsin – Madison, Madison WI/US, ⁹Pulmonary and Critical Care, Washington University in St. Louis, St. Louis MO/US

Introduction

- **Regional heterogeneity of ventilation** has been observed in asthma patients using hyperpolarized helium-3 gas (HP ³He) MRI and quantified using the segmental ventilation defect percent (SVDP). [1]
- Changes in the size and number of ventilation defects have been observed in response to inhaled bronchodilator:

Figure 1. Three axials slices from the same subject illustrate variable reversibility of ventilation defects following bronchodilator intervention.

- Airway wall thickness in segmental feeding airway can be measured on CT using VIDA software (VIDA Diagnostics, Coralville IA)
- Measurements of airway wall thickness and wall area percentage using MDCT were found to be greater in subjects with severe asthma [2].
- Previous work has showed significant increase in wall thickness in airways leading to poorly ventilated regions [3].

Purpose: To establish regional associations between defect reversibility in response to bronchodilator treatment and deviation from predicted airway wall thickness as a means to explore fixed vs. reversible ventilation defects.

Materials and Methods

Study Population Demographics		
	CT	CT + MRI Subset
Total N	65	21
Gender	23 M 42F	7M 14F
Age	45.0 ± 14.9 years	47.3 ± 16.6 years
Asthma	13 mild (20%)	4 mild (19.0%)
Severity	12 moderate (18.5%)	3 moderate (14.3%)
	40 severe (61.5%)	14 severe (66.7%)

CT performed post-bronchodilator (BD) in all subjects. MRI performed both pre- and post-BD in the CT+MRI subpopulation.

All imaging performed under stable conditions (subjects excluded if within 6 weeks of asthma exacerbation or respiratory complications).

We created two statistical models:

- (1) Predicted Wall Thickness. *All subjects*.
- (2) Predicted Wall Thickness vs. Reversibility. *CT* + *MRI subgroup*.

Regional Associations between CT Measures of Airway Structure and Hyperpolarized Helium-3 MRI Measures of Local Bronchodilator Response in Asthma

Materials and Methods (cont.)

Segmental Ventilation Defect Percent (SVDP)

Segmental Ventilation Defect Volume (HP 3He MRI) · 100% SVDP =**Segment Volume**

Figure 2. Identification of segmental volumes on CT in (a) allows for axial segment mask shown in (b) [3]. This mask can be overlaid on HP ³He MRI image (c) to identify spatial distribution of ventilation defects and calculate segmental VDP (SVDP). RB2-3 are segments of RUL, RB4-5 of RML, and RB6 of RLL; LB3-5 are segments of LUL, LB6 and LB8 of LLL. Note spatial overlap of prominent ventilation defect (red arrows) with segment LB8.

SVDP was measured both pre- and post-BD in the MRI + CT population [1, 4].

Airway Wall Thickness on CT

Segmental feeding airway wall thickness measured on CT population using VIDA software (VIDA Diagnostics, Coralville IA).

Predictive Model of Segmental Airway Wall Thickness

- Linear mixed effects model based on CT population - Predicted Wall Thickness WT is outcome. (Subject is random effect).

WT_pred ~ age + sex + BMI + severity + segment + subject

Thus wall thickness percent predicted (WTPP) is $\frac{WT Observed}{WT Predicted} * 100$

Bronchodilator Response vs. WTPP

- Generalized additive mixed effect model based on CT + MRI population

- Outcome is SVDP post-BD
- Input parameters SVDP pre-BD, segment, WT PP, and subject (random effect).

SVDP_post ~ SVDP_pre + segment + WT PP + subject

RB5

defect reversibility (p=0.04).

Discussion and Conclusion

no exposure to ionizing radiation.

This work suggests that a significant fraction of segments refractory to **bronchodilator intervention** also exhibit **airway remodeling**.

- presence of thicker airway wall.
- response to targeted therapies.

References

- [1] Thomen et al. *Radiology* 2014.
- [2] Aysola et al. Chest 2008.
- [3] Mummy et al. ATS International Coneferece 2016
- [4] Zha et al., Acad. Radiology 2016

Acknowledgements

- The Severe Asthma Research Program (SARP)
- NIH/NHLBI R01 HL080412
- NIH/NHLBI U10 HL109168

Figure 3. Illustration of predicted vs. actual wall thickness by segmental feeding airway in a single

• In the WT prediction model, segment and sex were significant factors.

In the model of wall thickness percent predicted (WTPP) vs bronchodilator response, greater segmental WTPP was associated with reduced segmental

• Whole lung VDP across the population was (median [1st quartile, 3rd) quartile]) 7.37 [2.43, 9.73] pre-BD and 5.35 [0.62, 7.76] post-BD (p < 0.05).

• Hyperpolarized gas MRI enables functional imaging before and after intervention with

• Smooth muscle relaxant effects of bronchodilator may have reduced efficacy in the

• Further analysis in this area may improve understanding of regional mechanisms of airway obstruction and their relationship with disease progression, severity, and

Electronic copy here:

• Wisconsin Alumni Research Foundation (WARF) Technology Transfer Research Assistantship